Double Integrals over Non-Rectangular Domains

Recall from our lecture on double integrals over rectangular domains we started by considering a cross-section for a fixed value of x. We computed the Area of this cross section using

$$\int_c^d f(x, y) \, dy.$$

Since the volume is the integral with respect to x of the cross-sectional area--

$$\int_a^b A(x) \, dx$$

We obtained:

$$\int \int f(x, y) \, dA = \int_a^b \int_c^d f(x, y) \, dy \, dx$$

Similarly we could start by fixing a value of y
In which case we obtain

\[\int \int f(x, y) \, dA = \int_c^d \int_a^b f(x, y) \, dx \, dy \]

Suppose however we have a non-rectangular domain, for example suppose we have a circular domain.

In the graph below we have \(x^2 + y^2 = 9 \).

How do we now calculate \(\int \int f(x, y) \, dA \)?

The idea is basically the same as with the case of a rectangular domain.

We start by fixing a value of \(x \), computing the cross-sectional area by integrating with respect to \(y \) and then integrating this result with respect to \(x \).

See Animation 11.

The main difference is that at each value of \(x \) the limits of integration change.

See Animation 10.
So let's consider then one cross section

Then at x_0, $A(x_0) = \int_{-\sqrt{9-(x_0)^2}}^{\sqrt{9-(x_0)^2}} f(x_0, y) dy$

Since this is true at every x we have in general

$$A(x) = \int_{-\sqrt{9-(x)^2}}^{\sqrt{9-(x)^2}} f(x, y) dy$$

Therefore since x varies from -3 to 3:

$$\int_{-3}^{3} \int_{-\sqrt{9-(x)^2}}^{\sqrt{9-(x)^2}} f(x, y) dy dx$$

Be careful with double integrals over rectangular regions we could reverse the order of integration without thought. However over non rectangular regions it takes a little more work.

For example if we were to just ignorantly reverse the order of integration above our result would involve functions of x not a number—volumes and masses are numbers.
We will consider a few examples later but let's generalize the 2 types of basic regions we'll consider.

Generally we only graph the domain, denoted \(R \), and not the surface \(z = f(x,y) \) to set up the double integral.

1. \(y \) varies between 2 functions of \(x \) and \(a \leq x \leq b \).

\[
\int \int f(x,y) \, dA = \int_{a}^{b} A(x) \, dx = \int_{a}^{b} \int_{g_1(x)}^{g_2(x)} f(x,y) \, dy \, dx
\]

1. \(x \) varies between 2 functions of \(y \) and \(c \leq y \leq d \).
\[\int \int f(x, y) \, dA = \int_c^d \int_{g_1(y)}^{g_2(y)} f(x, y) \, dx \, dy \]

Example 1

Suppose \(R \) is the region bounded by \(y = x \) and \(y = x^2 \). Suppose \(f(x, y) = x^2 \cdot y^3 \).

a. Calculate the volume by first integrating with respect to \(y \) then \(x \)

b. Calculate the volume by first integrating with respect to \(x \) then \(y \)

a.

![Graph showing the region R bounded by y = x and y = x^2](image)

At each \(x \), \(y \) varies from \(\frac{x^2}{x} \) to \(x \). We have \(A(x) = \int_{x^2}^{x} x^2 \cdot y^3 \, dy \)

\(x \) varies from 0 to 1. Therefore we have:

\[\int \int f(x, y) \, dA = \int_0^1 \int_{x^2}^{x} x^2 \cdot y^3 \, dy \, dx \]
\[
\int_0^1 \int_0^x x^2 \cdot y^3 \, dy \, dx = \int_0^1 \left(\frac{y^4}{4} \right) \, dx = \frac{1}{4} \int_0^1 x^6 - x^{10} \, dx = \left[\frac{x^7}{28} - \frac{x^{11}}{44} \right]_0^1 = \frac{1}{28} - \frac{1}{44} = .013
\]

b. Note here we have to invert our functions to get \(x \) as a function of \(y \)

\[
\begin{align*}
\int \int f(x, y) \, dA &= \int_0^1 \int_y \sqrt{y} x^2 \cdot y^3 \, dx \, dy \\
\int_0^1 \sqrt{y} x^2 \cdot y^3 \, dx &= \int_0^1 \sqrt{y} x^2 \, dx = \frac{1}{3} \cdot \frac{9}{3} \cdot \int_0^1 x^2 - y^6 \, dy = \left(\frac{2}{33} \cdot \frac{11}{21} \cdot \frac{7}{21} \right) \cdot \left[\frac{2}{33} - \frac{1}{21} \right] = .013
\end{align*}
\]

Example 2

Recall from our lecture on the double integral in terms of Riemann Sums if \(f(x, y) \) is the density then

\[
\int \int f(x, y) \, dA \quad \text{calculates the volume of a plate occupied by \(R \).}
\]
Suppose \(f(x,y) = x^2 \cdot y^4 \) is the density and \(R \) is the Region bounded by \(x = y^2 - 4 \) and \(y = x - 8 \).

Find the mass.

If we integrate first with respect to \(y \) and then with respect to \(x \) we need 2 integrals.

However if we integrate first with respect to \(x \) and then \(y \) we only need one integral.
So this is the approach we will take

All we need then is c and d. These are simply the points of intersection of $x = y^2 - 4$ and $x = y + 8$

\[
y^2 - 4 = y + 8
\]
\[
y^2 - y - 12 = 0
\]
\[
(y - 4) \cdot (y + 3) = 0
\]

$c = -3$ and $d = 4$ we have
\[\int \int f(x,y) \, dA = \int_{-3}^{4} \int_{y^2-4}^{y^8} x^2 \cdot y^4 \, dxdy = 5.859 \times 10^4 \]

I've left the details of the integration to you -- honestly this is one you want the computer do.

The point being: the Computer can't set up the integral -- that's where your genius comes into play. But once we have the set up let the computer do the boring details.

Example 3.

Evaluate \[\int_{0}^{1} \int_{4y}^{4} e^{-x^2} \, dx \, dy \, . \]

Well here neither we nor the computer can find the anti-derivative of \(e^{-x^2} \). However sometimes by reversing the order of integration we can solve problems such as this. This doesn't mean simply switching the integrals.

We start by graphing \(R \). The curve \(x = 4 \) is a vertical line and \(x = 4y \) is the line \(y = \frac{1}{4}x \).

\(y = 0 \) is the \(x \)-axis and \(y = 1 \) is a horizontal line.

\(R \) is the triangular region in the graph below

Reversing the order of integration we have
Therefore \[
\int_{0}^{1} \int_{0}^{4} e^{-x^2} \, dy \, dx = \int_{0}^{4} \int_{0}^{1} e^{-x^2} \, dy \, dx = \frac{1}{4} \int_{0}^{4} x \cdot e^{-x^2} \, dx \]
which we can now solve with the u substitution \[u = e^{-x^2}.
\]

\[u = e^{-x^2}
\]

\[u = -2 \cdot x \cdot e^{-x^2} \, dx
\]

\[\frac{1}{4} \cdot \int_{0}^{4} x \cdot e^{-x^2} \, dx = \frac{-1}{8} \cdot \int_{1}^{e^{16}} \, du = \frac{1}{8} - \frac{e^{-16}}{8} = .125 \quad \text{to 3 figs.}
\]

Note: we took a problem which couldn't be solved by even Einstein (he's dead anyway) and by reversing the order of integration had a problem Einstein's dog could solve.