
Lagrange Multipliers 

In our last  lecture we discussed a general method for finding global extrema for functions of 2 
variables. When a region has a boundary with a smooth parameterization we can usually simplify 
the process with the  following theorem. 
 
Theorem (Lagrange's Theorem) 
 
Let g(x,y) = c be a closed curve such that it has a smooth parameterization. Let f(x,y) be a function 
with continuous first partial derivatives defined on an open set containing g. 
 
(In terms of  constrained extrema problems   f(x,y) is the objective function and g(x,y) = c is the 
constraint.) 
 
Further suppose   g 0  at any point on this curve . 

 
Then if f has an extremum at  x

0
y

0
    then it occurs at a point where   f   g   . 

 
λ  is a constant and is known as the Lagrange Multiplier. 
 
We will prove this a little later but Let's consider an example first. 

Example  
 

Let   f x y( ) xy   on the unit circle g:  x
2

y
2

 1. Find the maximum and minimum values . 

 



 

 f y i

 x j


                g 2x i


 2y j


  

 

 f   g  

 

y i

 x j


 2 x i


 2 y j


  

 
Therefore we have : 
 

y 2 x 

x 2 y 

 
Eliminating λ  between the 2 equations we obtain: 
 

y

x

x

y
 

 

y
2

x
2
   or   y = + x 

 

using the constraint  x
2

y
2

 1   we obtain: 

 

 2 x
2

 1     so   x = +  
1

2
  . 

 
We obtain the four critical points : 
 

 
1

2

1

2










1

2

1

2










  ,
1

2

1

2









 and 

1

2

1

2









 

 

f
1

2

1

2










0.5   

 

f
1

2

1

2










0.5  

 

f
1

2

1

2










0.5  

 

f
1

2

1

2










0.5  

 



 

We have  a maximum value of 1/2 which occurs at  (
1

2
,

1

2
) and (

1

2
,

1

2
) 

 

and a minimum value of -1/2 which occurs at (
1

2
,

1

2
) and (

1

2
,

1

2
) 

Proof of Lagrange's Theorem  
 

Let   r t( )


x t( ) i

 y t( ) j


   be a smooth parameterization  of the constraint curve g(x,y) =c.  

 

Then  
dr

dt


dx t( )

dt
i




dy t( )

dt
j


    is tangent to the curve at each point and   g  is perpendicular to 

dr

dt



 

at 
 

 each point  since we can think of  r t( )


  as a level curve of g(x,y).   

 



 

We will show   f  is perpendicular to  
dr

dt



  at an extremum and therefore parallel to  g which 

means  f is a scalar multiple of  g   i.e.   f   g  

 
 

 f
f

x
i




f

y
j


  

 

 f
dr

dt




f

x
i




f

y
j












dx

dt
i




dy

dt
j













f

x

dx

dt


f

y

dy

dt


df

dt
 

 
 

At an extremum   
df

dt
0   and   f

dr

dt



 0  i.e.   f   is perpendicular to  
dr

dt



 and therefore 

parallel  to   g  . 

Example 2 

Suppose  f x y( ) 4 x
3

 y
2

   Find the maximum and minimum values on  the ellipse x
2

2 y
2

 1   

 



 

 f 12 x
2

 i

 2y j


                g 2x i


 4y j


  

 

 f   g  

 

12 x
2

 i

 2y j


 2 x i


 4 y j


  

 
Therefore we have : 
 

12x
2

2 x 

2y 4 y 

 
 
In equation 2 if  y 0   then λ  = 2. 

 

Using this in equation 1 we obtain  3 x
2

 x  so x = 0 or 1/3 

 

If x = 0 from the constraint  x
2

2 y
2

 1   y 1 1    . 

 

If x = 1/3                           
1

9
2 y

2
 1       y

2

3

2

3
  

 
 

If   y 0                            x
2

1           x 1 1  

 
So we have 6 possible pts  
 

0 1( ), 0 1( ),
1

3

2

3









,

1

3

2

3









, 1 0( )  and  1 0( )  

   
 
 
 

f x y( ) 4 x
3

 y
2

  

 

f 0 1( ) 1    f 0 1( ) 1 f
1

3

2

3










0.593  f
1

3

2

3










0.593  f 1 0( ) 4  f 1 0( ) 4  

We have a maximum value of 4 at (1,0)  and a minimum value  of -4  at (-1,0). 



 

Example 3 

We can also use Lagrange Multipliers for 3-D problems. 

Find the points on the sphere   x
2

y
2

 z
2

 9   closest to and furthest from the point (1,2,1) . 

 
 

 

Let D be the square of the distance from (1,2,1) to any pt (x,y,z). 
 

D x 1( )
2

y 2( )
2

 z 1( )
2

  

 

g:    x
2

y
2

 z
2

 9 

 

 D 2 x 1( ) i

 2 y 2( ) j


 2 z 1( ) k


  

 

 g 2 x i

 2y j


 2 z k


  

 
 

 D   g  

 
We obtain the 3 equations: 
 

x x 1  

 

y y 2  

 

z z 1  

 
 
 



 

Eliminating λ   we obtain   
x

x 1

y

y 2

z

z 1
 

From the first 2 we obtain 
 

x

x 1

y

y 2
     which yields    xy 2x xy y    so y = 2x 

 
Using the first and third   
 

x

x 1

z

z 1
   which yields    xz x xz z    so z = x 

 

We use these results in the constraint  x
2

y
2

 z
2

 9 to obtain    6 x
2

 9   x
3

2

3

2
  

 

We have  
3

2
2

3

2


3

2









 and  

3

2
 2

3

2


3

2










 

 
 

d D 

   
 

d x y z( ) x 1( )
2

y 2( )
2

 z 1( )
2

  

 

d
3

2
2

3

2


3

2










0.551  

 
 

d
3

2
 2

3

2


3

2










5.449  

The minimum distance is  0.551 which occurs at       
3

2
2

3

2


3

2
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
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

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. 
 

The maximum distance is 5.449  which occurs at   
3

2
 2

3

2


3

2








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