Level Curves

Suppose $T(x,y) = 1 - x^2 - y^2$ gives the temperature at any pt (x,y) in a region of the x-y plane.

Then a level curve or contour of T is a curve in the xy plane such that at every pt on that curve T has the same temperature.

This is to say a level curve is the intersection of the surface z = f(x,y) and the horizontal plane z = k projected into the xy plane.

A contour diagram is a set of level curves for values of z in equal increments.

Note for the function $T(x,y) = 1 - x^2 - y^2$ the contours z = k are the circles $x^2 + y^2 = 1 - k$

If k = 1 we have the single point (0,0). As k decreases we obtain concentric circles.

See the diagrams below:

Observation 1 The closer the contours are the steeper the surface.

Let's consider the contour diagram of a plane

Observation 2 The contours are equally spaced lines for planes. What we are saying is that the amount z changes in a particular direction are the same between any two contours. Be Careful just because the contour diagram consists of lines it doesn't necessarily mean the surface is a plane. The contours must also be equally spaced as the following diagram shows.

X

Let's consider a saddle:

Observation 3 Starting at the center for fixed x, z increases as y increases or decreases. For fixed y, z decreases as x increases or decreases.

$$k = 1 - x^2 + y^2$$

$$x^2 - y^2 = 1 - k$$

If k < 1 then we have a hyperbola opening to the right and left.

If k = 1 then we have $x^2 - y^2 = 0$ which give the lines $y = \pm x$.

If k > 1 then we have $y^2 - x^2 = k - 1$ which are hyperbolas opening up and down.

Consider the matrix of values for this surface below and compare it to the corresponding contour diagram

	É					у —					\rightarrow
1		6	7	8	9	10	11	12	13	14	15
`	2	-0.92	-1.2	-1.4	-1.52	-1.56	-1.52	-1.4	-1.2	-0.92	-0.56
X :	3	-0.32	-0.6	-0.8	-0.92	-0.96	-0.92	-0.8	-0.6	-0.32	0.04
	4	0.2	-0.08	-0.28	-0.4	-0.44	-0.4	-0.28	-0.08	0.2	0.56
	5	0.64	0.36	0.16	0.04	0	0.04	0.16	0.36	0.64	1
	6	1	0.72	0.52	0.4	0.36	0.4	0.52	0.72	1	1.36
	7	1.28	1	0.8	0.68	0.64	0.68	0.8	1	1.28	1.64
	8	1.48	1.2	1	0.88	0.84	0.88	1	1.2	1.48	1.84
	9	1.6	1.32	1.12	1	0.96	1	1.12	1.32	1.6	1.96
	10	1.64	1.36	1.16	1.04	1	1.04	1.16	1.36	1.64	2
	11	1.6	1.32	1.12	1	0.96	1	1.12	1.32	1.6	1.96
	12	1.48	1.2	1	0.88	0.84	0.88	1	1.2	1.48	1.84
	13	1.28	1	0.8	0.68	0.64	0.68	0.8	1	1.28	1.64
	14	1	0.72	0.52	0.4	0.36	0.4	0.52	0.72	1	1.36
	15	0.64	0.36	0.16	0.04	0	0.04	0.16	0.36	0.64	1
	16	0.2	-0.08	-0.28	-0.4	-0.44	-0.4	-0.28	-0.08	0.2	0.56
\downarrow	17	-0.32	-0.6	-0.8	-0.92	-0.96	-0.92	-0.8	-0.6	-0.32	0.04

Using Contour Diagrams to graph implicitly defined functions

Suppose we have the implicitly defined function cos(xy) = y. How do we generate its graph?

We rewrite it as cos(xy) - y = 0 and can then think of the graph as a level curve of f(x,y) = cos(xy) - y corresponding to the value 0.

In the graph below Note we also have the graphs of cos(xy) = y + c for c = -4, 4, -2, and 2 also.

